Lattice parameters obtained at these temperatures were excluded from Fig. 1 and from the least squares fits of the data. The first run with LaRu₂ indicated that at about 300°C the lattice constant changed very little with temperature. In order to check this behavior a second run was made. The data from the second run, however, indicated no abnormal behavior at that temperature. This accounts for the high concentration of points shown near 300°C for LaRu₂ in Fig. 1. The fits of the lattice constant *versus* temperature data are summarized in Table I. From these constants the instantaneous linear thermal coefficients were calculated by using eqn. (5). The resulting α_i values are shown in Fig. 2 as a function of temperature. TABLE I SUMMARY OF X-RAY THERMAL EXPANSION DATA | Compound | Temp. range (°C) | | $a = A + Bt + Ct^2$ | | | Stand. dev. | $\bar{a} \times 10^{-6}$ °C 20° to t_{max} | |---|----------------------------------|----------------------|----------------------------|-------------------------|-----------------------|---------------------------|--| | | | | A | B × 105 | C × 108 | $\sigma \times 10^4 $ (A) | | | LaRu ₂
CeRu ₂
PrRu ₂ | 16°-800°
19°-900°
19°-650° | 38 a
26 b
23 b | 7.7025
7.5354
7.6210 | 7.021
5.700
6.923 | 1.75
3.31
0.711 | ±11.01
7.72
6.01 | 10.98
11.59
9.713 | Data obtained from Unicam cameras 1 and 2 and CRL camera. Data obtained from one of the Unicam cameras and the CRL camera. Fig. 2. The instantaneous coefficient of thermal expansion of $LaRu_2$, $CeRu_2$ and $PrRu_2$ as a function of temperature. J. Less-Common Metals, 8 (1965) 217-221